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Dynamic scattering from solutions of semiflexible polymers

Klaus Kroy and Erwin Frey
Institut für Theoretische Physik, Physik Department der Technischen Universita¨t München, James-Franck-Strabe,

D-85747 Garching, Germany
~Received 5 June 1996!

The dynamic structure factor of semiflexible polymers in solution is derived from the wormlike chain model.
Special attention is paid to the rigid constraint of an inextensible contour and to the hydrodynamic interactions.
For the cases of dilute and semidilute solutions exact expressions for the initial slope are obtained. When the
hydrodynamic interaction is treated on the level of a renormalized friction coefficient, the decay of the structure
factor due to the structural relaxation obeys a stretched exponential law in agreement with experiments on
actin. We show how the characteristic parameters of the system~the persistence lengthl p , the lateral diameter
a of the molecules, and the mesh sizejm of the network! are readily determined by a single scattering
experiment with scattering wavelengthl obeyinga!l! l p andl,jm . We also find an exact explicit ex-
pression for the effective~wave-vector-dependent! dynamic exponentz(k),3 for semiflexible polymers and
thus an enlightening explanation for a longstanding puzzle in polymer physics.@S1063-651X~97!14702-X#

PACS number~s!: 61.25.Hq, 87.15.He, 36.20.Ey
ic
,
m
ti
lo
de
es
ble
at
u
tio
fo

o
c
bv
g-
e

e
-
le
a
ac
.
m
an

is
m
m
ca
in
n
s

Th

he
his
are
les

-

cal

ith

e
is
les.
the

rsis-

i-
er-
s of
pic
hain

ils.
r-

is

are

gu-
I. INTRODUCTION

Recently, there has been increasing interest in biolog
materials research@1#. The physical properties of colloids
liquid crystals, and macromolecular networks are of pri
importance for the structure and function of biological en
ties such as cells and muscles. On the other hand, bio
provides physicists with some of the most pertinent mo
systems to test their theories of soft matter. Among th
systems we will concentrate on solutions of semiflexi
macromolecules here. The challenging problems associ
with semiflexibility, which have been attacked by numero
groups over many years, have received recent atten
Semiflexibilityhas been recognized as a crucial property
the understanding of many peculiar features of DNA@2,3#
and actin@4–8#. This may not be too surprising in the case
actin, which polymerizes into filaments that are rarely mu
longer than their persistence length. It is perhaps less o
ous for DNA molecules, which are typically orders of ma
nitude longer than their persistence length and thus hav
overall flexible appearance.

In this paper we will concentrate on thedynamicaspects
of semiflexibility. In contrast to the dynamics of flexibl
polymers @9# the dynamic properties of semiflexible poly
mers are still not very well understood: Whereas a simp
analytically tractable basic model for flexible polymers h
been known for a long time, we lack such a generally
cepted simple model in the case of semiflexible polymers
seems worth mentioning the reason for simplicity and co
plexity in both cases. The standard model for the statics
dynamics of a flexible polymer is the Gaussian chain@9#,
which represents the connection of the monomers by an
tropic harmonic potential characterized by a single para
eter, the mean square end-to-end distance of the poly
This description reproduces many of the universal large s
properties of flexible polymers, which are purely entropic
origin. The universality may be understood as a conseque
of the central limit theorem. The harmonic theory allow
extensions to nonideal problems by perturbation theory.
551063-651X/97/55~3!/3092~10!/$10.00
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simplicity of the model is due to the fractal structure of t
Gaussian chain: it looks exactly the same on all scales. T
property is clearly not shared by real polymers. They
coiled on large scales, but they are rodlike on length sca
below their persistence lengthl p . A more realistic polymer
model than the Gaussian chain is the so-called‘‘Kratky-
Porod’’ model @10#. In this model the conformation is de
rived from an effective free energy@11#,

E~$rs%!5
k

2E0
L

dsS ]2rs
]s2 D

2

, ~1.1!

which takes into account the energy cost ofbendingthe con-
tour. This is the contour integral over the square of the lo
curvature multiplied by the bending modulusk. The confor-
mation resulting from the above free energy together w
the rigid constraintu]rs /]su51 of an inextensible contouris
known as the ‘‘wormlike chain.’’ It is not a fractal as for th
Gaussian chain model but a differentiable curve, which
indeed rodlike on short distances and coiled on large sca
Short and long distances are measured with respect to
decay length of the tangent-tangent correlations, the pe
tence lengthl p5k/kBT @12#.

If one does not look for a description of the specific m
croscopic details of a macromolecule but wants to und
stand global universal properties, shared by large classe
molecules, then one need not worry about the microsco
discrepancy between a real polymer and the Gaussian c
model in the case of proper flexible polymers withl p of the
order of the lateral diametera. In this case the local rodlike
structure is part of the nonuniversal microscopic deta
However,l p /a is somewhat larger than 1 in several impo
tant cases, e.g., for polystyrene, DNA, actin, etc.~for actin
l p /a.103). One may still hope that the intrinsic stiffness
negligible, when the total contour lengthL of the molecules
is much larger thanl p , because the large scale properties
then dominated by the coil structure.

As far as the dynamics is concerned, this heuristic ar
ment has one flaw with possibly serious consequences:hy-
3092 © 1997 The American Physical Society
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55 3093DYNAMIC SCATTERING FROM SOLUTIONS OF . . .
drodynamic interactionsplay a crucial role for the dynamic
properties of polymers in solution, as they do for any syst
of Brownian particles in hydrodynamic solvents. Because
dynamics of the solvent, which mediates these interactio
is usually much faster than the Brownian dynamics, the
drodynamic interactions in dilute and semidilute solutio
can be subsumed into an~instantaneous! mobility matrix,

H~r!5
1

8phr S 11
ur&^ru
r 2 D , ~1.2!

called theOseen tensor, which is calculated from the Navier
Stokes equation for the pure solvent@9#. Multiplied by a
force acting at the origin it gives a contribution to the velo
ity v of the solvent at any point in spacer. This velocity field
has the characteristic feature to decay like 1/r in real space,
where r is the length of the vectorr; i.e., it is both long
ranged and singular at the origin. Physically speaking,
singularity is a consequence of idealizing a physical part
as a mass point and has to be cut off at about the diam
a of the polymer. For a real polymer, this short distan
divergence has the consequence that its local semiflex
structure, which one would possibly prefer to neglect, m
markedly pronounce itself in the dynamic properties, eve
the polymer as a whole looks rather flexible. If one decid
to take care of this effect, one immediately runs into a pr
lem: The longitudinal degree of freedom of any contour
ement of the polymer is suppressed by the presence o
neighboring contour elements. This rigid constraint of a
cally inextensible contour is the source of the difficulty
modeling the dynamics of~intrinsically! semiflexible poly-
mers. It renders awkward any general theory@11,13,14#
which tries to represent this property faithfully. On the oth
hand, models that relax the constraint too much — as, e
the so-called Harris-Hearst-Beals model@15# and its latest
descendants@16–19# — include artificial stretching mode
and find a Gaussian distribution for all spatial distanc
along the contour; i.e., the essence of semiflexibility has
viously been lost. The correct radial distribution function
a semiflexible polymer withL' l p is actually very different
from a Gaussian distribution@20#. It is not peaked at the
origin and hence cannot be approximated by a Gaus
form. Moreover, these ‘‘Gaussian’’ models treat the therm
fluctuations to be isotropic. However, as was pointed out
many workers in the field~see, e.g., Refs.@14,21#!, it is con-
ceptually important to be aware of thelocal anisotropyof the
bending undulations caused by the rigid constraint of c
stant contour length.

There is a special case, where semiflexible dynamics
be treated analytically with moderate expense. This is
limit of a weakly bending rod, which also has been address
previously@21–23#. However, these workers did not arrive
the results given below. Especially the crucial point of t
local anisotropy of the undulations, which was recognized
Ref. @21# but not discussed in Ref.@23#, will be analyzed
more closely in this contribution. We will show that th
complication does not necessarily prevent an analytical
proach. In a forthcoming publication@24# we will also give a
quantitative comparison of our results for the decay of
structure factor with new experimental data.
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Below, we will demonstrate how one can incorporate t
rather complex hydrodynamic interactions and effects fr
chemical cross-linking in a semidilute solution into the d
scription on a reasonable level of accuracy. To be spec
for the computation of the dynamic structure factor we
quire the scale separation

a!l! l p ,L and l,jm ~1.3!

to be realized. Here we have introduced the symboljm for
the mesh size in a semidilute solution and the scatte
wavelengthl52p/k. The latter should be shorter than th
mesh size to probe the dynamics ofsingle polymers. The
conditions in Eq.~1.3! are generic for such important cas
as neutron scattering or light scattering experiments fr
semidilute solutions of DNA or actin, respectively.

The outline of the paper is as follows. In Sec. II we deri
the functional form of the decay of the dynamic structu
factor for semiflexible polymers in solution. Special attenti
has to be paid to the rigid constraint of constant cont
length and to the hydrodynamic interaction. We demonstr
how this can be achieved in the case of interest. We give
exact analytical result for the time decay of the structu
factor and show that it can be reduced to a simple stretc
exponential law, which is readily applied to determine va
ous parameters of interest from experimental data. In Sec
we calculate the initial slope of the structure factor. This c
be used to measure the microscopic lateral diametera of the
polymer by a dynamic scattering experiment withl@a. We
show that the short time dynamics of semiflexible polym
is characterized by a wavelength-dependent dynamic ex
nentz(k), which is computed explicitly. What is remarkab
about our results compared to other predictions available
the literature@25,21# is that they are simple analytical expre
sions, which at the same time excellently fit experimen
data@6#. Finally, in Sec. IV we summarize our findings an
outline some possible experimental applications.

II. STRUCTURAL RELAXATION

For the following we suppose Eq.~1.3! holds. We con-
centrate on the common case of a semidilute solution,
dilute limit being included as a special case. With the con
tions in Eq.~1.3! the decay of the structure factor is main
caused by the local conformational fluctuations, whereas
global structure of the polymer network stays virtually fixe
during the characteristic decay time. This allows for a d
scription of the dynamics purely in terms of the transve
undulations of a weakly bending rod, i.e., in terms of t
Langevin equation

]

]t
rs~ t !5E

0

L

ds8H'~rs2rs8!S 2
d

drs8
E~$rs8%!1 f̃s8D

~2.1!

for the polymer contourrs . The random force~per length!
f̃s is assumed to represent Gaussian white noise. The con
mational energy is given by Eq.~1.1!. The mobility matrix

H'~r!5
e2r /jh

8phr S 12
ur &^ru
r 2 D ~2.2!
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3094 55KLAUS KROY AND ERWIN FREY
serves to mediate the hydrodynamic interaction and
project out the forbidden longitudinal motion of the se
ments. This is a convenient method to enforce the rigid c
straint of fixed contour length mentioned above on the lo
dynamics. Please note that Eq.~2.2! therefore differs from
the Oseen tensor given in Eq.~1.2! by the opposite sign o
the projectorur&^ru. Whereas~as a consequence of the in
compressibility of the solvent! the longitudinal direction is
weighted twice in the usual Oseen tensor, it is now co
pletely suppressed.@Recall that we can neglect the center
mass and rotational modes as a consequence of the time
separation induced by Eq.~1.3!.# The exponential prefacto
in Eq. ~2.2! accounts for the screening of the hydrodynam
self-interaction of a single molecule by the surrounding n
work: hydrodynamic interactions over distances longer th
the mesh size are largely suppressed because of the l
effective viscosity of the solution as compared to the p
solvent. A formal derivation of the exponential screeni
term has been achieved before within a self-consistent
proach known as the ‘‘effective medium theory’’@9#. One
expects the screening length to be roughly equal to the m
size. It was indeed shown to obey basically the same sca
law as a function of the concentration@26#. Simple geometri-
cal considerations@27# suggest that the mesh size of a sem
dilute solution of semiflexible polymers with a large rat
l p /a obeys to a very good approximation the scaling law

jm}c21/2, ~2.3!

until the mesh size becomes considerably larger than the
sistence length.

For the following we will neglect the nonlocal nature
the mobility matrix Eq.~2.2! and replace it by the inverse o
the effective transverse friction coefficient~per length!

z̃'5
4ph

ln~jh /a!
~2.4!

for the transverse undulations. This coefficient may be
tained from Eq.~2.2! by taking the terms in parentheses
Eq. ~2.1! out of the integral and averaging over all segme
s for a virtually straight contour. However, we want to poi
out briefly how one can proceed more rigorously. Worki
with the full mobility matrix Eq. ~2.2! in the equation of
motion, Eq.~2.1!, one needs its Fourier transform. For t
transformation to make sense, the short distance singul
mentioned above has to be cut off at the diameter of
moleculea. For the transverse undulations we thus set
transverse mobility equal to the prefactor in Eq.~2.2! with a
short distance cutoff represented by another expone
screening term:

H'~r !5
e2r /jh2e2r /a

8phr
. ~2.5!

This leads to a convenient regularization for the famil
@28,23,25# logarithmic mode number dependence of the h
drodynamic interaction: The Fourier transform ofH' is di-
agonal with the diagonal elementsH̃'(q) given by
o
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8phH̃'~q!5
1

2
lnS a221q2

jh
221q2D ¥qa!11

2
lnS a22

jh
221q2D .

For modes of wavelength longer than the screening len
(qjh!1) the last formula reduces to the mode mobil
(2z̃')

21 derived from Eq.~2.6! by the normal mode analysi
~see the Appendix!, but it predicts a somewhat smaller mo
bility H̃'(q)→2 lnqa/8ph1O„(qjh)

22
… for the short

wavelength modes withqjh@1. It is not a critical approxi-
mation to neglect the weak wavelength dependence of
mobility in the following considerations. This will allow for
a simple expression for the decay of the structure factor,
at the same time it captures the main effect of the hydro
namic self-interaction of the single polymers as well as th
mutual interaction. The error made in this approximation c
in part be compensated by renormalizingjh to an ‘‘effective
hydrodynamic screening length.’’ Since the originaljh was a
phenomenological parameter, which had to be determi
from experiment anyway, this is not a serious shortcom
from a practical point of view. For the rather dilute ca
(kjm@1) a theoretical estimate for the parameterjh in Eq.
~2.4! — motivated by the exact result, Eq.~3.4!, obtained in
Sec. III for the initial decay rate — iskjh5e5/6 ~see the
Appendix!. A further refinement would be tedious and i
effects presumably undetectable in typical scattering exp
ments.

With the above considerations in mind we may use
‘‘Rouse-like’’ linear equation with a renormalized frictio
coefficientz̃' for the transverse local undulationsrs

'(t):

z̃'

]

]t
rs
'~ t !52k

]4

]s4
rs
'~ t !1 f̃ s

' . ~2.6!

The transverse random force~per length! f̃ s
' represents

Gaussian white noise. Equation~2.6! can be solved by a
normal mode analysis. Physically, from Eq.~1.3! one ex-
pects that the problem at hand should not depend sensiti
on the special choice of the boundary conditions. This m
be justified by a formal argument as well. The reader m
generally~but not invariably! think of the normal modes a
cosine functions~see the Appendix!. Effects from chemical
cross-linking of the polymers~clamped ends! will be incor-
porated later on.

To calculate the decay of the dynamic structure factor,
start from the definition

g~k,t !5
1

N(
n,m

^exp$ ik•@rn~ t !2rm~0!#%& ~2.7!

for the dynamic structure factor of a statistical system co
posed ofN equal scattering centers~monomers!. As we have
explained above, our main interest is in situations where
decay of the structure factor is mainly caused by the f
local bending undulations while the global structure of t
network stays virtually fixed. Therefore, we perform the co
formational average in two steps: First we take the therm
averagê •••&T over the transverse undulations of a weak
bending rod keeping the mean orientation of the rod fixed
space. Then we average over an isotropic ensemble of
orientations^•••&O. As the transverse undulations obey
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55 3095DYNAMIC SCATTERING FROM SOLUTIONS OF . . .
linear Langevin equation, they have Gaussian correlation
the random forces. Using the abbreviations

Rnm
i :5a~n2m!, Rnm

'2~ t !:5^@rn
'~ t !2rm

'~0!#2&T

we can rewriteg(k,t) as

1

N(
nm

^^exp$ ik'
•@rn

'~ t !2rm
'~0!#%&T exp@ ik

iRnm
i #&O

and, after performing the thermal average, as

1

N(
nm

^exp@2k'2Rnm
'2~ t !/4#exp@ ik iRnm

i #&O. ~2.8!

Performing now also the orientational average, we obtain
explicit general expression

g~k,t !52
iAp

2N (
nm

gnm~k,t !, ~2.9!

with

gnm~k,t !:5
exp@Rnm

i2 /Rnm
'2~ t !2k2Rnm

'2~ t !/4#

kRnm
' ~ t !

3F erfS i2 kRnm
' ~ t !1

Rnm
i

Rnm
' ~ t ! D

1 erfS i2 kRnm
' ~ t !2

Rnm
i

Rnm
' ~ t ! D G . ~2.10!

To proceed further we introduce the Rouse-like dec
time of the mode of wavelength 2L

tL5
z̃'

k S Lp D 4, ~2.11!

which is immediately read off by dimensional analysis fro
Eq. ~2.6! as the characteristic time scale. As another natu
abbreviation we introduce the decay rate

gk5
kBT

z̃'

k8/3l p
21/3, ~2.12!

which will be shown to govern the time decay of the stru
ture factor. The decay rategk may also be predicted by
simple scaling argument@28,23#: For the wormlike chain the
amplitudes of small transverse undulations scale asr'2

}r i3/ l p with the wavelengthr i. Substituting the scattering
wavelengthl for the amplituder' of the undulations and
r i for the contour length parameterL in Eq. ~2.11!, one ob-
tains Eq.~2.12!. This heuristic argument is a special case
a more general theorem derived in Ref.@28# for the disper-
sion relation of the decay rate:

gk}k
2/a with a5

2z

D12z1a
,

the stretching exponent. Herez denotes the roughness exp
nent (z53/2 for the weakly bending rod!, D is the dimen-
as

e

y

al

-

f

sion of the fluctuating manifold, anda characterizes the hy
drodynamic interaction (a50 in the present case!.

After solving Eq. ~2.6! by a normal mode analysis an
some technical manipulations~see the Appendix! we find

k2Rnm
'2~ t !5

4

p
~gkt !

3/4I ~xm ,y!1k2Rnm
'2~0!, ~2.13!

where we have introduced fort.0 the dimensionless vari
ablesxm :5(t/tLm)

1/4, y:5kRnm
i /@(gkt)

1/4(klp)
1/3# and @29#

I ~xm ,y!:5E
xm

`

dx
cos~xy!

x4
~12e2x4!. ~2.14!

The lower limit of the integral serves to exclude modes
wavelength longer than 2Lm . By Lm we denote the contou
length between adjacent clamped points along the cont
This infrared cutoff is a heuristic way to take into accou
the effects of steric constraints, so-called entangleme
Strictly speaking, these entanglements cannot fix the p
mers in space efficiently at short times@Rnn

'2(t)!jm
2 #, i.e.,

until an average contour element has moved a distance o
order of the mesh sizejm . Only for times longer than
1/gj

m
21 do the constraints suppress modes of wavelen

longer than the entanglement lengthLm5(3/2jm
2 l p)

1/3 @30#.
However, this subtle point can safely be neglected, beca
xm!1 for short times (gj

m
21t!1) anyway. IfkLm is suffi-

ciently large the modes which contribute most to the de
are not substantially disturbed until the structure factor
completely decayed, i.e.,gktLm.(kjm)

8/3@1 and we can

take the limitxm→0 in Eq. ~2.14!. On the other hand, if the
condition kjm@1 is not fulfilled, the steric constraints be
come important and the structure factor decays in two ste
For short times@Rnn

'2(t)!jm
2 # the decay is mainly due to th

fast single chain dynamics. As a consequence of the infra
cutoff xm the structure factor does not decay to zero but o
to a valueg(k,t@tLm)/g(k,0)'exp@2(gktLm)

3/4/3p#. The
further decay is due to the slower collective modes of
network, which are not considered here. An obvious ques
in this context is how is the single chain dynamics affec
by chemical cross-links? It is our opinion the chemical cro
links shouldnot be discernible from entanglements by ju
looking at the single chain dynamics. However, chemi
cross-linking often leads to microphase syneresis@31#, i.e., to
separated microphases with the local mesh size being lo
or shorter, respectively, than the average mesh size. The
sults derived below can also be applied to investigate s
more complex situations@24#.

Let us further discuss Eq.~2.13! for the rather dilute case
(xm50) without corrections from steric constraints firs
Note that for veryshort times@ t!(klp)

24/3gk
21# the peaked

function I (0,y) of Eq. ~2.14! shown in Fig. 1 vanishes for al
but the diagonal terms in the sum in Eq.~2.9!. @Because we
neglect end effects (kL@1) and treat the polymer as homo
geneous, we will speak ofthe diagonal term and write
k2R0

'2(t)54/p (gkt)
3/4I (0,0) for k2Rnn

'2(t).# As a conse-
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3096 55KLAUS KROY AND ERWIN FREY
quence, the time decay of the structure factor is domina
by the diagonal element~s! of the sum in Eq.~2.9! and we
have up to static terms

g~k,t !}Ap expS 2
k2R0

'2~ t !

4 D erf„ikR0
'~ t !/2…

ikR0
'~ t !

.

~2.15!

This differs markedly from a simple exponential by its alg
braically slow decay for long times but reduces to

g~k,t !}exp„2k2R0
'2~ t !/6… ~2.16!

for the short timest!(klp)
24/3gk

21 where it is supposed to
be valid. For comparison, this function together with E
~2.15! and Eq.~2.17! is depicted in Fig. 2. We suspect th
Eq. ~2.16! may not be discernible in experiments, becaus
belongs to a time regime which falls within the crossover
the simple exponential initial decay, i.e., the tim
(klp)

24/3gk
21.tk21.h/kk4 is of the same order of magn

tude as the crossover timet* @33# to the initial decay regime
discussed in Sec. III and in the Appendix. On the other ha
for sufficiently long times t@(klp)

24/3gk
21 the function

I (0,y) may be replaced by the constantI (0,0), because o
the strongly oscillating static terms shown in Fig. 3. No
that in the limit of largeklp ‘‘sufficiently long times’’ may

FIG. 1. The functionI (0,y) of Eq. ~2.14!, which appears as a
time-dependent prefactor in the approximate scaling law
k2Rnm

'2(t)2k2Rnm
'2(0) in Eq. ~2.13!.

FIG. 2. A comparison of the decay laws Eq.~2.15!, Eq. ~2.16!,
and Eq.~2.17! on a logarithmic time scale. Indicated are the tim
t i referred to in Fig. 3.
d

-

.

it

d,

be considerably shorter than the characteristic decay t
gk

21 . Then, we can moreover neglect the static te
Rnm

'2(0) in Eq. ~2.13!. Hence, Rnm
'2(t) is replaced by

R0
'2(t) for all relevant times, and using the relatio

(1/N)(nmexp(ik
iRnm

i )}d(ki), Eq. ~2.8! reduces again to a
simple exponential form

g~k,t !}exp„2k2R0
'2~ t !/4… ~klp@1!. ~2.17!

The last result also could have been obtained immedia
from Eq. ~2.8! for a purely transverse scattering geome
with k[k'. This is what one expects, of course, since t
longitudinal degree of freedom is suppressed and thus ca
contribute to inelastic scattering. Note that Eq.~2.17! is very
similar to what one would have predicted if the rigid co
straint of constant contour length had been neglected a
gether and isotropic motion of the local contour elements
been assumed. The end result in this approximation is o
ously insensitive to the constraint except that the mobi
coefficient, which enters the calculation ofR0

'2(t), is re-
duced as compared to the isotropic model. In other wo
except for their different mobility an ensemble of random
oriented scattering centers, which are constrained to mov
two dimensions, cannot be distinguished from an ensem
of isotropically moving scattering centers by their dynam
scattering. This fact inspired us to use a simplified proced
to calculate the initial decay rate in Sec. III. It also explai
the fortunate success of some of the ‘‘Gaussian’’ models
fitting experimental data@19#. Let us emphasize, howeve
that the reduction of the mobility coefficient due to the a
isotropy of the undulations, which the ‘‘Gaussian’’ mode
fail to account for, is a crucial point that must not be n
glected if one wants to obtain quantitative results and ga
real understanding of the underlying physics.

Summarizing the above discussion we conclude that
time decay of the dynamic structure factor for a rather dil
solution (kjm@1) of semiflexible polymer obeys

r
FIG. 3. Static terms suppress contributions to the structure

tor which arise from correlations of distant contour elements.
several fixed timest i indicated in Fig. 2,gnm(k,t) from Eq. ~2.10!
is shown as a function ofkRnm

i in the rod limit, i.e., for infinite
persistence lengthl p . The oscillations decay more slowly for large
times. For comparison the static structure factor of a rigid rod~solid
line! has been included.



l

rin

w

n
a
er
a

t

ys

th

e

e

t
-
m
a

re
m
er
-
q.

ru
-
-
d
r
it

ain

n

xt-
f-
ale
lax-
f a

ent
lly
on
e
nd
ruc-
ible
lly
s
the
een
mo-
hus
kly
On
can

n-
lls
ef.
w
ot
ot-
er
om
em
ect

e:

ion

55 3097DYNAMIC SCATTERING FROM SOLUTIONS OF . . .
g~k,t !}expS 2
G~ 1

4 !

3p
~gkt !

3/4D . ~2.18!

@Here we have usedI (0,0)5G(1/4)/3.# For short times
t!(klp)

24/3gk
21 we predict a deviation of the functiona

form of the decay from Eq.~2.18! according tog(k,t)
}exp@22G(14)/9p(gkt)

3/4] and ultimately to the initial decay
law derived in Sec. III.

A stretched exponential decay as predicted by Eq.~2.18!
has indeed been found in several dynamic light scatte
studies with semidilute actin solutions@23,6#. Assuming that
the persistence length of actin is about 17mm @34#, we con-
clude thatklp.102 and Eq.~2.18! should be well suited to
describe dynamic light scattering from actin solutions. Ho
ever, some fluorescence microscopy studies@38# suggest that
the flexibility of actin could be strongly length scale depe
dent and that actin may be much more flexible on the ch
acteristic length scales probed in light scattering exp
ments. According to these results one would estim
klp.101 and expectg(k,t) to cross over to Eq.~2.16! as
discussed after Eq.~2.18!.

For the genuinely semidilute case, whenkjm.1 and ef-
fects from steric constraints are not negligible, we have
consider the infrared cutoffxm.0 in Eq. ~2.14!. For
gktLm.(kjm)

8/3 of the order of 1 the structure factor deca
in two steps as we have mentioned after Eq.~2.14!. We
restrict the following analysis to the fast decay due to
single chain dynamics (t/tLm[xm

4 ,1). Then it is useful to
split the integral in Eq.~2.14! into two parts, one of which
runs from zero to infinity and the other from zero toxm . A
Taylor expansion of the integrand of the second integral r
dersk2R0

'(t) to orderO(t2) in the simple form

k2R0
'~ t !5

4

p
~gkt !

3/4FG~ 1
4 !

3
2S t

tLm
D 1/41 1

10S t

tLm
D 5/4G .

This expression allows one to extract the entanglem
length Lm ~and thus the mesh sizejm) from experimental
data and may eventually become useful in understanding
very interesting phenomena@31# that occur when semiflex
ible polymer solutions are gradually cross-linked. The sa
perturbation expansion has previously been claimed to
count for hydrodynamic screening effects@32#. We do not
agree with this interpretation: Hydrodynamic screening
duces the hydrodynamic correlations. Nevertheless, the
bility for the long modes certainly does not decrease to z
but saturates at the finite value 2z̃' , as we have shown ex
plicitly by use of Eq.~2.5!. See also the discussion after E
~2.14!.

III. INITIAL SLOPE

The results of the preceding section show that the st
ture factorg(k,t) of a solution of semiflexible polymers de
cays on a characteristic time scalegk

21 by a stretched expo
nential law, Eq.~2.18!. However, this expression is not vali
in the limit t→0. The initial slope of the structure facto
does not become infinitely steep. Instead, as we explic
demonstrate in the Appendix,g(k,t→0) asymptotically ap-
g
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proaches a simple exponential law, exp(2gk
(0)t) @33#. To cal-

culate the initial decay rate

gk
~0! :52

lng~k,t !

dt U
0

~3.1!

of the time decay of the dynamic structure factor we ag
suppose that Eq.~1.3! is fulfilled. A rigorous scheme for the
calculation of the initial slope of the structure factor for a
ensemble of beads — coupled by a potentialE($rs%) and by
the hydrodynamic interaction — may be found in the te
book of Doi and Edwards@9#. Here we assume that the stif
ness of the molecule is not too large, so that the time sc
separation between solvent fluctuations and structural re
ation still holds, i.e., the characteristic relaxation rate o
bending undulation of wavelength (l pl

2)1/3 is supposed to be
much smaller than the characteristic diffusion rate of solv
fluctuations of the same size. Then the hydrodynamica
driven small fluctuations about the equilibrium conformati
~where the potential forces vanish! are much faster than th
structural relaxation of typical bending undulations a
hence dominate the short time behavior of the dynamic st
ture factor. What is special about the case of a semiflex
polymer is again the rigid constraint imposed by the loca
rod-like contour. If one would just follow the Doi-Edward
scheme naively, paying regard to the rodlike structure of
molecule only through the static structure factor, the Os
tensor would render each contour element two times as
bile along the contour as in the transverse directions, t
adding an artificial extra degree of freedom to the wea
bending rod problem, which is moreover weighted twice.
the level of a mere counting of degrees of freedom, one
thus say that — compared to the mobility matrix Eq.~2.2! —
this amounts to overestimating the overall mobility of a co
tour element by a factor of 2. If reversed, this argument te
that one may follow the simple computional scheme of R
@9# if the result is divided by 2 in the end. This is indeed ho
we will proceed below. Of course, the procedure is n
strictly rigorous: it does not pay regard to the local anis
ropy of the motion due to the rigid constraint. On the oth
hand, it takes the local reduction of the degrees of freed
properly into account. From our experience with the probl
of local anisotropy in the preceding section we may exp
the result to be exact.

Using the screened Oseen tensor in Fourier space,

H~k!5
1

h~k21jh
22!

S 12
uk&^ku
k2 D , ~3.2!

we arrive at the following integral for the initial decay rat

gk
~0!5

kBT

2h E1/a dq

~2p!2
g~q!

g~k! F ~q22k2!2

2qkjh
22 lnU q2k

q1k U
1

~q21jh
222k2!214jh

22k2

4qkjh
22 ln

~q1k!21jh
22

~q2k!21jh
22 21G .

~3.3!

The static properties of the polymer enter the calculat
only via the static structure factorg(k) and through the fac-
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tor 1/2. This implies a certain universality of the initial dec
rate even in the semiflexible case. However, it turns out to
less universal than predicted by the Gaussian chain mo
The main contributions to the integral come from largeq. It
actually diverges at the upper limit as a consequence of
short distance singularity of the Oseen tensor mentione
the Introduction. This justifies the weakly bending rod a
proximation and forl! l p , L we may replace the static
structure factor by its asymptotic formg(k)}k21. Again, we
have introduced the lateral diametera of the molecule to cut
off the ultraviolet divergence. After doing the integral an
dropping all but the leading order terms inka one obtains in
the dilute limit (kjh→`) the strikingly simple result

gk
~0!5

kBT

6p2h
k3S 562 lnkaD . ~3.4!

Working with the full ~rather lengthy! expression may be
necessary in some applications, but the conceptual and p
tical significance of the result is best appreciated in the ab
limit. The deviation of Eq. ~3.4! from the scaling law
gk
(0);k3 for a Gaussian chain is weak, hence it is useful

express Eq.~3.4! as a quasiscaling lawgk
(0);kz(k) with a

wave-vector-dependent dynamical exponentz(k) given by

z~k!53
6lnka23

6lnka25
. ~3.5!

This result is depicted in Fig. 4 together with a representa
curve for the more complicated semidilute case. It seem
account well for the deviations from the Gaussian chain p
diction z53 seen in several experiments with polystyre
@35#. It is tempting to speculate that these are a signatur
hydrodynamically enhanced local semiflexibility. It would b
worth checking whether the initial decay of the structure f
tor measured by neutron scattering from solutions of po
styrene, DNA, or any other intrinsically semiflexible pol
mer may be fitted by Eq.~3.4! with a reasonable value fo
a. Indeed, in the case of the biopolymer actin Eq.~3.4! al-
ready passed this test with remarkable success: It fits ex
lently available light scattering data witha55.4 nm @6#,
which compares very well to the value of 5.1660.3 nm ob-
tained by much more elaborate methods@36,37# for two

FIG. 4. The effective~wave-vector-dependent! dynamic expo-
nentz(k). The solid line is a plot of Eq.~3.5! for the dilute case.
The dashed line is a representative curve for a semidilute solu
with screened hydrodynamic interactions (jh5200a).
e
el.

e
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ac-
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e
to
-

of

-
-

el-

times the transversal radius of gyration of the actin filame
Note that the resolution suggested by this comparison is
beyond the scattering wavelength, which was about an o
of magnitude larger thana in the cited light scattering ex
periments. If the screening length has a finite value, Eq.~3.4!
and Eq.~3.5! have to be replaced by more complicated e
pressions, e.g.,

gk
~0!5

kBTk
3

180hp2 @28230 ln~ka!16 k22jh
22

26 k23jh
23arctan~kjh!230k21jh

21arctan~kjh!

23 k2jh
2ln~11k22jh

22!215 ln~11k22jh
22!#

~3.6!

for kjh@1, but the qualitative structure is preserved. T
main effect of screening is to flatten the increase ofgk

(0) and
z(k) in the long wavelength limit~cf. Fig. 4!. The above
results for the dilute case can still be considered a reason
approximation for semidilute solutions in a restricted ran
of scattering wavelengthsl!jm .

IV. CONCLUSIONS

Dynamic scattering experiments allow for an accur
measurement of model parameters, if the number of th
parameters is small and, of course, if the model is adeq
within the range of wavelength and frequency probed. Sc
tering techniques are then sometimes more convenient
direct methods developed recently to investigate the dyn
ics of individual polymers, such as flicker analysis@38# and
microrheology@39#, which are still plagued by some techn
cal complications@40#. They allow one to probe in a quick
and reliable experiment the internal dynamics of single po
mers with the necessary statistical averaging inherently
cluded. It was the purpose of our work to derive~within the
common experimental accuracy! exact analytical expression
for the time decay of the dynamic structure factor for so
tions of semiflexible polymers. We succeeded in the case
Eq. ~1.3!, i.e., for scattering from the internal undulations
genuinely semiflexible polymers in solution. This is a g
neric situation for neutron scattering from DNA or light sca
tering from actin solutions, just to mention two outstandi
applications. Our analytical results for the initial decay ra
and the dynamic exponent for semiflexible polymers sugg
that deviations of the dynamic exponent for~more or less!
flexible polymers from its classical valuez53 are probably
due to the local semiflexible structure of these molecu
and that the above analysis is therefore of some releva
also to scattering from rather flexible polymers. Moreov
these results lead to a convenient method to measure
microscopic lateral diametera of a semiflexible polymer by
use of the simple Eq.~3.4!. From a fit of the result for
g(k,t)/g(k,0),

expH 2
~gkt !

3/4

p FG~ 1
4 !

3
2S t

tLm
D 1/41 1

10S t

tLm
D 5/4G J ,

valid for klp@1 and intermediate timest

n
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~klp!
2 4/3gk

21!t!tLm,

to experimental data one finds with good accuracy the be
ing modulusk ~and the persistence lengthl p5k/kBT) of the
molecules. Forkjm'1 the mesh sizejm and the effective
hydrodynamic screening lengthjh of the network can be
determined. In the case of chemical crosslinking one ha
be more careful since the development of microphases
cause the mesh size to vary considerably throughout
sample. For sufficiently largekLm the terms containingtLm
can be neglected and the dynamic structure factor obeys
~2.18!. Note that the hydrodynamic screening lengthjh is
closely related to the mesh sizejm , because the surroundin
network disturbs the hydrodynamic autocorrelations of
individual polymers over distances longer thanjm . How-
ever, one should keep in mind that — due to our appro
mate treatment of the hydrodynamic interaction in Sec. II
jh in the effective friction coefficient used in Sec. II must b
regarded as an effective parameter, which will in gene
differ from jm in its absolute value because it compensa
for the deviation of the simple coefficient Eq.~2.2! from a
more accurate description as Eq.~2.5!. Finally we want to
mention a hidden ambiguity of the above results. Accord
to Eqs.~2.3!, ~2.4!, and ~2.12! a stiffening of the molecule
~e.g., by a chemical manipulation! as well as an increase i
concentration may cause a slowing down of the time de
of the structure factor. An apparent increase in concentra
may easily be caused by all kinds of syneresis in the cou
of chemical cross-linking, although the overall concentrat
remains constant. Therefore some caution is needed in
interpretation of experimental data.
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APPENDIX

The eigenfunctions of the linear bending equation for
transverse undulations of a weakly bending rod with f
ends ats56L/2 are given by@13#

u~p,s!}
cosnps/L

cosnp/2
1
coshnps/L

coshnp/2

with np'(2p11)p/2 for p.0 odd and by the analog ex
pression with cos and cosh replaced by sin and sinh, res
tively, for p even. Since we will only need theu(p,s) for
largep@1 ands!L ~far from the ends!, we may drop the
hyperbolic terms, which are small of order exp(2pp/2), and
write

u~p,t !'~2 !~p11!/2cosS pp
s

L D
for p odd and
d-

to
an
e

q.

e

i-

l
s

g

y
n
se
n
he

e-

e
e

c-

u~p,t !'~2 !p/2sinS pp
s

L D
for p even. The transverse undulations and forces are
pressed as

rs
'~ t !52(

p
rp~ t !u~p,s!, f̃ s

'5
1

L(p fpu~p,s!.

~We do not consider the zero mode.! The mode amplitudes
decay as

^rp~ t !rp~0!&T5^rp
2&Te

2t/tp.

Here tp :5tL /p
4 and ^r p

2&T is determined by the equiparti
tion theorem:

^rp
2&T5

kBTL
3

k~pp!4
.

After splittingRs§
'2(t) into dynamic and static contribution

Rs§
'2~ t !52^rs

'~0!r§
'~0!2rs

'~ t !r§
'~0!&T

1^@rs
'~0!2r§

'~0!#2&T ,

insertion of the normal modes renders the dynamic term

8(
p

@^rp
2&T2^rp~ t !rp~0!&T#u~p,s!u~p,§!.

For largep the parentheses are approximately equal for s
cessive terms in the sum and we can then replace the pro
of eigenfunctions by cos@pp(s2§)/L#/2. Substituting the sum
for t!t1 by an integral we arrive at

Rs§
'2~ t !2Rs§

'2~0!5
4L3

l p
E dp

~pp!4
cos@pp~s2§!/L#

3~12e2t/tp!.

Introducing the scaling variables as discussed in the m
text one now obtains Eq.~2.13!.

Finally we derive the initial decay within this approach.
the limit t→0, Rnm

' (t) becomes small. In this case we ma
expand Eq.~2.8! to first order inRnm

' (t). Using Eq.~2.13!
and Eq.~2.14! for largekjm and neglecting the static contr
butionRnm

' (0) in the weakly bending rod limit, we get

g~k,t→0!

5
1

2E21

1

dx
1

N(
nm

eixka~n2m!

3F12~12x2!
~gkt !

3/4

p E
0

`dz

z4
cosS zka~n2m!

~ t/tkL!
1/4 D G .

After summation and neglecting kLx/2 against
zf:5zkL/2(t/tkL)

1/4 we have
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g~k,t→0!5g~k,0!2
1

2E21

1

dx~12x2!
N

p
~gkt !

3/4

3E
0

`dz

z4
~12e2z4!

sin2~zf!

~zf!2
.

For short timest!tkL[tk21 ~see also@33#! the z-integral
reduces top/2f and for large scattering vectorskL@1 the
static structure factorg(k,0) approachesp/ka, hence

g~k@L21,t→0!

g~k,0!
512

2kBT

3pz̃'

k3t.

The initial decay is simple exponential in time with the in
tial slope
bly
e
-

c
-

tt.

,

nn

s

ng

hy

ys

ys

ys
gk
~0!5

kBT

6p2h
k3ln~jh /a!.

A more accurate expression for the initial decay rate is co
puted in Sec. III. The deviation is due to the approxima
treatment of the hydrodynamic interaction in Sec. II. B
comparison of the above result with Eq.~3.4! one can fix the
phenomenological parameterjh for rather dilute systems
(kjm@1), for which hydrodynamic screening is negligibl
Thenjh becomes roughly equal to the scattering wavelen
and no longer has the intuitive physical interpretation o
screening length.
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