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Dynamic scattering from solutions of semiflexible polymers
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The dynamic structure factor of semiflexible polymers in solution is derived from the wormlike chain model.
Special attention is paid to the rigid constraint of an inextensible contour and to the hydrodynamic interactions.
For the cases of dilute and semidilute solutions exact expressions for the initial slope are obtained. When the
hydrodynamic interaction is treated on the level of a renormalized friction coefficient, the decay of the structure
factor due to the structural relaxation obeys a stretched exponential law in agreement with experiments on
actin. We show how the characteristic parameters of the syétenpersistence lengthy, the lateral diameter
a of the molecules, and the mesh sigg of the network are readily determined by a single scattering
experiment with scattering wavelengkhobeyinga<i<I, and\<¢,. We also find an exact explicit ex-
pression for the effectivéwave-vector-dependendynamic exponent(k) <3 for semiflexible polymers and
thus an enlightening explanation for a longstanding puzzle in polymer phySit863-651X97)14702-X]

PACS numbsdis): 61.25.Hq, 87.15.He, 36.20.Ey

[. INTRODUCTION simplicity of the model is due to the fractal structure of the
Gaussian chain: it looks exactly the same on all scales. This
Recently, there has been increasing interest in biologicaproperty is clearly not shared by real polymers. They are
materials researcfil]. The physical properties of colloids, coiled on large scales, but they are rodlike on length scales
liquid crystals, and macromolecular networks are of primebelow their persistence length. A more realistic polymer
importance for the structure and function of biological enti-model than the Gaussian chain is the so-callédatky-
ties such as cells and muscles. On the other hand, biologyorod” model[10]. In this model the conformation is de-
provides physicists with some of the most pertinent modelived from an effective free enerdy 1],
systems to test their theories of soft matter. Among these L (g2 2
systems we will concentrate on solutions of semiflexible E({rs})sz ds(—rzs) ’ (1.1
macromolecules here. The challenging problems associated 2 Js
with semiflexibility, which have been attacked by numerous
groups over many years, have received recent attentionivhich takes into account the energy cosbehdingthe con-
Semiflexibilityhas been recognized as a crucial property fortour. This is the contour integral over the square of the local
the understanding of many peculiar features of DfRA3] ~ curvature multiplied by the bending modulks The confor-
and actin4—8]. This may not be too surprising in the case of mation resulting from the above free energy together with
actin, which polymerizes into filaments that are rarely muchthe rigid constraintars/ds| =1 of aninextensible contouis
longer than their persistence length. It is perhaps less obvknown as the “wormlike chain.” It is not a fractal as for the
ous for DNA molecules, which are typically orders of mag- Gaussian chain model but a differentiable curve, which is
nitude longer than their persistence length and thus have dndeed rodlike on short distances and coiled on large scales.
overall flexible appearance. Short and long distances are measured with respect to the
In this paper we will concentrate on tlilynamicaspects decay length of the tangent-tangent correlations, the persis-
of semiflexibility. In contrast to the dynamics of flexible tence length = «/kgT [12].
polymers[9] the dynamic properties of semiflexible poly-  If one does not look for a description of the specific mi-
mers are still not very well understood: Whereas a simplegroscopic details of a macromolecule but wants to under-
analytically tractable basic model for flexible polymers hasstand global universal properties, shared by large classes of
been known for a long time, we lack such a generally acmolecules, then one need not worry about the microscopic
cepted simple model in the case of semiflexible polymers. Igliscrepancy between a real polymer and the Gaussian chain
seems worth mentioning the reason for simplicity and comimodel in the case of proper flexible polymers withof the
plexity in both cases. The standard model for the statics andrder of the lateral diametex. In this case the local rodlike
dynamics of a flexible polymer is the Gaussian chig@h  structure is part of the nonuniversal microscopic details.
which represents the connection of the monomers by an isddowever,|,/a is somewhat larger than 1 in several impor-
tropic harmonic potential characterized by a single paramtant cases, e.g., for polystyrene, DNA, actin, €for actin
eter, the mean square end-to-end distance of the polymdr,/a= 10%). One may still hope that the intrinsic stiffness is
This description reproduces many of the universal large scaleegligible, when the total contour lengthof the molecules
properties of flexible polymers, which are purely entropic inis much larger thah,, because the large scale properties are
origin. The universality may be understood as a consequendben dominated by the coil structure.
of the central limit theorem. The harmonic theory allows As far as the dynamics is concerned, this heuristic argu-
extensions to nonideal problems by perturbation theory. Thenent has one flaw with possibly serious consequeritgs:
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drodynamic interactionplay a crucial role for the dynamic Below, we will demonstrate how one can incorporate the
properties of polymers in solution, as they do for any systentather complex hydrodynamic interactions and effects from
of Brownian particles in hydrodynamic solvents. Because thehemical cross-linking in a semidilute solution into the de-
dynamics of the solvent, which mediates these interactionscription on a reasonable level of accuracy. To be specific,
is usually much faster than the Brownian dynamics, the hyfor the computation of the dynamic structure factor we re-
drodynamic interactions in dilute and semidilute solutionsquire the scale separation

can be subsumed into dmstantaneoysmobility matrix,

a<i<l,,L and N<§, 1.3

H(D)= 1 (1+w» (1.  to be realized. Here we have introduced the symfofor
8myr r the mesh size in a semidilute solution and the scattering
wavelengthh =27/k. The latter should be shorter than the
mesh size to probe the dynamics sifigle polymers. The
conditions in Eq.(1.3 are generic for such important cases
as neutron scattering or light scattering experiments from
semidilute solutions of DNA or actin, respectively.

The outline of the paper is as follows. In Sec. Il we derive
the functional form of the decay of the dynamic structure
. o . . factor for semiflexible polymers in solution. Special attention
ranged and singular at the origin. Physically speaking, th as to be paid to the rigid constraint of constant contour

singularity is a consequence of idealizing a physical p.artidqength and to the hydrodynamic interaction. We demonstrate
as a mass point and has to be cut off at "?‘b°“t the _d|amet%row this can be achieved in the case of interest. We give the
a of the polymer. For a real polymer, this short distance

. : . _-_exact analytical result for the time decay of the structure
divergence has the consequence that its local sem|erX|bI]e d sh hat i be reduced imol hed
structure, which one would possibly prefer to neglect mayactor and show that it can be reduced to a simple stretche
marked| : ronounce itself in the dynamic properties e,ven inponentlaI law, which is readily applied to determine vari-

y P y - Prop ' ., ous parameters of interest from experimental data. In Sec. Ill

the polymer as a whole looks rather flexible. If one decides - :
) . . : we calculate the initial slope of the structure factor. This can

to take care of this effect, one immediately runs into a prob-

lem: The longitudinal degree of freedom of any contour eI-be used to measure the microscopic lateral dianztsfrthe

ement of the polymer is suppressed by the presence of i olymer by a dynamic scattering experiment itk a. We

neighboring contour elements. This rigid constraint of a lo->"1OW that the short time dynamics of semiflexible polymers

. . : oo . is characterized by a wavelength-dependent dynamic expo-
cally inextensible contour is the source of the difficulty in k) which i ted licitly. What | Kabl
modeling the dynamics ofintrinsically) semiflexible poly- ngntzt( ), whic It IS compu ed texpt;10| Y- d'at' IS femafl %I €
mers. I renders. awkvard any general thegtt 1314 SUOULO SIS Sompares fo oler predetons avalanle
which tries to represent this property faithfully. On the otherSions which at' the same tir)mlwe exceIIF:antI fityex eringental
hand, models that relax the constraint too much — as, €04t ’6] Einallv. in Sec. IV >Nty i (;) q
the so-called Harris-Hearst-Beals modli#b] and its latest a&.‘[ - Finally, In Sec. TV.we summarize our findings an
descendant§16—19 — include artificial stretching modes outline some possible experimental applications.
and find a Gaussian distribution for all spatial distances
along the contour; i.e., the essence of semiflexibility has ob- Il. STRUCTURAL RELAXATION
viously been lost. The correct radial distribution function of

?semiflgxible PO'V(;T‘ef.;V“fL“'Op isl, actually veri %iffererr:t centrate on the common case of a semidilute solution, the
rom a Gaussian distributiof20]. It is not peaked at the i e jimit being included as a special case. With the condi-

origin and hence cannot be approximated by a Gaussiafy, s jn Eq.(1.3 the decay of the structure factor is mainly

form. Moreover, these “Gaussian” models treat the thermal e py the local conformational fluctuations, whereas the
fluctuations to be isotropic. However, as was pointed out b

lobal structure of the polymer network stays virtually fixed
many workers in the fieldsee, e.g., Ref$14,21)), it is con- % uet poly W ys vimiey

v i b ¢ ttasal ani fth during the characteristic decay time. This allows for a de-
ceptually Important to be aware of thecal anisotropyof the scription of the dynamics purely in terms of the transverse
bending undulations caused by the rigid constraint of con

undulations of a weakly bending rod, i.e., in terms of the
stant contour length. Langevin equation
There is a special case, where semiflexible dynamics can

be treated analytically with moderate expense. This is the L S _
limit of a weakly bending rodwhich also has been addressed —r(t)= f ds'H, (rg— rS,)( ——E{rg}) +fg
previously[21—-23. However, these workers did not arrive at at 0 ors

the results given below. Especially the crucial point of the 21

local anisotropy of the undulations, which was recognized i
Ref. [21] but not discussed in Ref23], will be analyzed n@r the polymer contours. The random forcéper length

more closely in this contribution. We will show that this fs iS assumed to represent Gaussian white noise. The confor-
complication does not necessarily prevent an analytical aghational energy is given by Eq1.1). The mobility matrix
proach. In a forthcoming publicatidi24] we will also give a .
guantitative comparison of our results for the decay of the H, (r)= € ( _ [r)(r|
structure factor with new experimental data. + 8myr r?

called theOseen tensemvhich is calculated from the Navier-
Stokes equation for the pure solvel]. Multiplied by a
force acting at the origin it gives a contribution to the veloc-
ity v of the solvent at any point in spaceThis velocity field
has the characteristic feature to decay like itV real space,
wherer is the length of the vector; i.e., it is both long

For the following we suppose Eql.3) holds. We con-

(2.2
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serves to mediate the hydrodynamic interaction and to _ 1 [a 2+q?|9a=<11 a2
project out the forbidden longitudinal motion of the seg- 8myH (q)=35In| === | —5In| ==—=—=|.
ments. This is a convenient method to enforce the rigid con- 2 1 & 7+ 2 1&g

straint of fixed contour length mentioned above on the local .
dynamics. Please note that E@.2) therefore differs from F©f modes of wavelength longer than the screening length
the Oseen tensor given in E(L.2) by the opposite sign of (q§h<11) the last formula reduces to the mode mobility
the projector|r)(r|. Whereas(as a consequence of the in- (2£1) ~ derived from Eq(2.6) by the normal mode analysis
compressibility of the solveptthe longitudinal direction is (see the Appendix but it predicts a somewhat smaller mo-
weighted twice in the usual Oseen tensor, it is now combility H,(q)— —Inga8m5+0((qéy) 2 for the short
pletely suppressediRecall that we can neglect the center of wavelength modes witgé,>1. It is not a critical approxi-
mass and rotational modes as a consequence of the time scai@tion to neglect the weak wavelength dependence of the
separation induced by E@1.3).] The exponential prefactor mobility in the following considerations. This will allow for
in Eg. (2.2 accounts for the screening of the hydrodynamica simple expression for the decay of the structure factor, and
self-interaction of a single molecule by the surrounding netat the same time it captures the main effect of the hydrody-
work: hydrodynamic interactions over distances longer thamamic self-interaction of the single polymers as well as their
the mesh size are largely suppressed because of the largsutual interaction. The error made in this approximation can
effective viscosity of the solution as compared to the purgn part be compensated by renormalizi§gto an “effective
solvent. A formal derivation of the exponential screeninghydrodynamic screening length.” Since the origiggiwas a
term has been achieved before within a self-consistent agghenomenological parameter, which had to be determined
proach known as the “effective medium theory9]. One from experiment anyway, this is not a serious shortcoming
expects the screening length to be roughly equal to the medhom a practical point of view. For the rather dilute case
size. It was indeed shown to obey basically the same scalingké,>1) a theoretical estimate for the parameggrin Eq.
law as a function of the concentratip?6]. Simple geometri- (2.4) — motivated by the exact result, E(.4), obtained in
cal considerationf27] suggest that the mesh size of a semi-Sec. Ill for the initial decay rate — iké,=e%® (see the
dilute solution of semiflexible polymers with a large ratio Appendi¥. A further refinement would be tedious and its
|,/a obeys to a very good approximation the scaling law effects presumably undetectable in typical scattering experi-
ments.
gnocc 12 (2.3 With the above considerations in mind we may use a
“Rouse-like” linear equation with a renormalized friction

until the mesh size becomes considerably larger than the pe?_oefflmentg for the transverse local undulations(t):

sistence length. -9 P _
For the following we will neglect the nonlocal nature of L —re(t)=—k—re(t)+fL. (2.6)
the mobility matrix Eq.(2.2) and replace it by the inverse of at Js

the effective transverse friction coefficiefper length ~,
The transverse random forcger length f 5 represents

Gaussian white noise. Equatig2.6) can be solved by a
= (2.4) normal mode analysis. Physically, from E@d..3) one ex-
In(én/a) pects that the problem at hand should not depend sensitively
on the special choice of the boundary conditions. This may
for the transverse undulations. This coefficient may be obbe justified by a formal argument as well. The reader may
tained from Eq.2.2 by taking the terms in parentheses in generally(but not invariably think of the normal modes as
Eq. (2.1) out of the integral and averaging over all segmentscosine functiongsee the Appendjx Effects from chemical
s for a virtually straight contour. However, we want to point cross-linking of the polymer¢clamped endswill be incor-
out briefly how one can proceed more rigorously. Workingporated later on.
with the full mobility matrix Eq.(2.2) in the equation of To calculate the decay of the dynamic structure factor, we
motion, Eq.(2.1), one needs its Fourier transform. For the start from the definition
transformation to make sense, the short distance singularity 1
mentioned above has to be cut off at the diameter of the ;
moleculea. For the transverse undulations we thus set the g(k)= Nn,zm (explik: [rn() =rm(0)]}) @7
transverse mobility equal to the prefactor in E2.2) with a
short distance cutoff represented by another exponentidbr the dynamic structure factor of a statistical system com-
screening term: posed ofN equal scattering cente(gmonomers. As we have
explained above, our main interest is in situations where the
e éh_grla decay of the structure factor is mainly caused by the fast
—_— (2.5 local bending undulations while the global structure of the
network stays virtually fixed. Therefore, we perform the con-
formational average in two steps: First we take the thermal
This leads to a convenient regularization for the familiaraverage(- - - ); over the transverse undulations of a weakly
[28,23,29 logarithmic mode number dependence of the hy-bending rod keeping the mean orientation of the rod fixed in
drodynamic interaction: The Fourier transformief is di-  space. Then we average over an isotropic ensemble of rod
agonal with the diagonal elemertts (q) given by orientations(- - -)o. As the transverse undulations obey a

~ 47y

H (r)= oy
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linear Langevin equation, they have Gaussian correlations ason of the fluctuating manifold, ara characterizes the hy-

the random forces. Using the abbreviations drodynamic interactiong=0 in the present cage
| L N . 5 After solving Eq.(2.6) by a normal mode analysis and
Ram:=a(n—m),  Ryn(t):=([ry(t)—rn(0)]%)r some technical manipulatiorisee the Appendjxwe find

we can rewriteg(k,t) as

4
k2 12 - 3/4 ’ k2 #r%] 0), 2.
%E ((explik" [y ()= rn(0) )7 exilikI Ry o Fonl0) =2 (WO ) TR, (249

and, after performing the thermal average, as where we have introduced fak>0 the dimensionless vari-
ablesxy,:=(t/m )", y: =kRh /L (1) Y4(K1 ) ] and[29]

%2 (ext] — k" 2RyA(O)/Alexd ikIR) 1o. (2.8

® cogXxy) 4
Performing now also the orientational average, we obtain the | (X, Y):= JX dx—z 4 (1-e7™). (2.14
explicit general expression m
g(kt)=— EE Gum(Kot) 2.9 The lower limit of the integral serves to exclude modes of
! 2N f7 S ' wavelength longer thanl2,,. By L, we denote the contour
length between adjacent clamped points along the contour.
with This infrared cutoff is a heuristic way to take into account
12 poL2 o 12 the. effects of steric constraints, so-called entgnglements.
g (K1) = exf R/ Rum(t) — KRy m(t)/4] Strictly speaking, these entanglements cannot fix the poly-
nm e KR (1) mers in space efficiently at short img®;:2(t)<£2], i.e.,
. | until an average contour element has moved a distance of the
«| erf I—kRi () + Ram ) order of the mesh siz&,,. Only for times longer than
2 nm Rim(1) 1/7%1 do the constraints suppress modes of wavelength

i Rl longer than the entanglement lendth=(3/2£4] ;)% [30].
SkRE () — = ) . (2.10 However, this subtle point can safely be neglected, because
2 Ram(t) Xm=<1 for short times ¢;~1t<1) anyway. IfkLy, is suffi

To proceed further we introduce the Rouse-like decafie“tly large the .mode_s which con_tribute most to the decay
time of the mode of wavelengthL2 are not substantially d_|sturbed until tr;% structure factor has
completely decayed, |.e.ykr|_mz(k§m) >1 and we can

_Aéi ( L)“ take the limitx,,— 0 in Eq.(2.14). On the other hand, if the

+ erf nm

L (21D conditionké,>1 is not fulfilled, the steric constraints be-
come important and the structure factor decays in two steps:
which is immediately read off by dimensional analysis from For short time§ R;;2(t) < £2] the decay is mainly due to the
Eq. (2.6) as the characteristic time scale. As another naturafast single chain dynamics. As a consequence of the infrared
abbreviation we introduce the decay rate cutoff x,,, the structure factor does not decay to zero but only
to a valueg(k,t>r )/g(k,0)~exd—(ym,)*¥37]. The
WL (2.12) further deca_y is due to the_slower collective modes of t_he
k ZL P ' network, which are not considered here. An obvious question
in this context is how is the single chain dynamics affected
which will be shown to govern the time decay of the struc-by chemical cross-links? It is our opinion the chemical cross-
ture factor. The decay ratg, may also be predicted by a links shouldnot be discernible from entanglements by just
simple scaling argumefi28,23: For the wormlike chain the looking at the single chain dynamics. However, chemical
amplitudes of small transverse undulations scalersd  cross-linking often leads to microphase synerg3ls, i.e., to
ocrH3/|p with the wavelengthr!. Substituting the scattering Separated microphases with the local mesh size being longer
wavelength\ for the amplituder® of the undulations and Or shorter, respectively, than the average mesh size. The re-
rl for the contour length parameterin Eq. (2.11), one ob-  Sults derived below can also be applied to investigate such
tains Eq.(2.12. This heuristic argument is a special case ofmore complex situationg24].

K \mT

kT

a more genera| theorem derived in RHB] for the disper- Let us further discuss E(q213 for the rather dilute case
sion relation of the decay rate: (Xxm=0) without corrections from steric constraints first.

Note that for veryshorttimes[t<(kl,) ~#?y, '] the peaked

e B 27 function!(0,y) of Eq.(2.14 shown in Fig. 1 vanishes for all

k™ with a= D+2{+a’ but the diagonal terms in the sum in E&.9). [Because we

neglect end effectsk(L>1) and treat the polymer as homo-
the stretching exponent. Hefedenotes the roughness expo- geneous, we will speak ofhe diagonal term and write
nent ((=3/2 for the weakly bending rodD is the dimen-  k®Rg2(t)=4/m7 (yt)*4(0,0) for k?R52(t).] As a conse-
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1.5

8Kt

10.y)

kaln-m|

FIG. 1. The functionl (0,y) of Eq. (2.14), which appears as a FIG. 3. Static terms suppress contributions to the structure fac-
time-dependent prefactor in the approximate scaling law foror which arise from correlations of distant contour elements. For
K*Rym(t) —k*Rya(0) in Eq. (2.13. several fixed times; indicated in Fig. 2g,m(k,t) from Eq.(2.10

is shown as a function dtRUm in the rod limit, i.e., for infinite
quence, the time decay of the structure factor is dominategersistence length, . The oscillations decay more slowly for larger

by the diagonal elemefs) of the sum in Eq(2.9 and we  times. For comparison the static structure factor of a rigid(satid
have up to static terms line) has been included.

g(k,t)= ar exp —

széz(t)) erfik Ry (1)/2) _ L ,
— be considerably shorter than the characteristic decay time
4 kR (1) v«*. Then, we can moreover neglect the static term
(219 R:2(0) in Eq. (2.13. Hence, Ri:2(t) is replaced by
This differs markedly from a simple exponential by its alge-Rg°(t) for all relevant times, and using the relation
braically slow decay for long times but reduces to (1/N)Enmexp6k”Rﬂ,m)oc5(k”), Eq. (2.8) reduces again to a

simple exponential form
g(k,t)cexp(—k?R§%(1)/6) (2.16

for the short timeg<(kl,) ~*®y, ' where it is supposed to g(k,t)cexp(—k®Rg2(1)/4)  (kl,>1).  (2.17
be valid. For comparison, this function together with Eqg.
(2.15 and Eq.(2.17) is depicted in Fig. 2. We suspect that
Eq. (2.16 may not be discernible in experiments, because iThe last result also could have been obtained immediately
belongs to a time regime which falls within the crossover tofrom Eq. (2.8) for a purely transverse scattering geometry
the simple exponential initial decay, i.e., the timewith k=k'. This is what one expects, of course, since the
(k|p)_4/3’)/|:1:7'k712 nl kk* is of the same order of magni- longitudinal degree of freedom is suppressed and thus cannot
tude as the crossover tinh& [33] to the initial decay regime contribute to inelastic scattering. Note that E&17) is very
discussed in Sec. Il and in the Appendix. On the other handsimilar to what one would have predicted if the rigid con-
for sufficiently long times t>(k|p)‘4’3yk‘1 the function straint of constant contour length had been neglected alto-
1(0y) may be replaced by the constdrfD,0), because of gether and isotropic motion of the local contour elements had
the strongly oscillating static terms shown in Fig. 3. Notebeen assumed. The end result in this approximation is obvi-
that in the limit of largekl, “sufficiently long times” may ously insensitive to the constraint except that the mobility
coefficient, which enters the calculation ﬁgz(t), is re-
1 — : ‘ duced as compared to the isotropic model. In other words,
except for their different mobility an ensemble of randomly
oriented scattering centers, which are constrained to move in
two dimensions, cannot be distinguished from an ensemble
of isotropically moving scattering centers by their dynamic
scattering. This fact inspired us to use a simplified procedure
to calculate the initial decay rate in Sec. lll. It also explains
the fortunate success of some of the “Gaussian” models in
fitting experimental dat§19]. Let us emphasize, however,
that the reduction of the mobility coefficient due to the an-
isotropy of the undulations, which the “Gaussian” models
t‘ P p fail to account for, is a crucial point that must not be ne-
1 2 3 . . . . .
Int glected if one wants to obtain quantitative results and gain a
real understanding of the underlying physics.
FIG. 2. A comparison of the decay laws Hg.15), Eq. (2.16), Summarizing the above discussion we conclude that the
and Eq.(2.17) on a logarithmic time scale. Indicated are the timestime decay of the dynamic structure factor for a rather dilute
t; referred to in Fig. 3. solution ké&,>1) of semiflexible polymer obeys

g(k,t)/g(k,0)

—— Eq. (2.15)
,,,,,, Eq. (2.16)
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proaches a simple exponential law, exp{"t) [33]. To cal-
. (2.18 culate the initial decay rate

NG
g(k,t)oceXp( - 3(—;)(7@)3’4

. I k1
[Here we have used(0,0)=1'(1/4)/3] For short times 7;(0);=_ ng(k,t) (3.1
t<(kl,)"“3y,* we predict a deviation of the functional dt

form of the decay from Eq(2.18 according tog(k,t) , ) .
cexy —20'(2)/197(v,t)¥4 and ultimately to the initial decay of the time decay of.the d_ynam|c structure factor we again
law derived in Sec. lII. suppose that Eq1.3) is fulfilled. A rigorous scheme for the

A stretched exponential decay as predicted by @dL8 calculation of the initial slope of the structure factor for an
has indeed been found in several dynamic light scatteringnSemble of beads — coupled by a poterEigrs}) and by
studies with semidilute actin solutiofi23,6. Assuming that e hydrodynamic interaction — may be found in the text-
the persistence length of actin is about A [34], we con- book of Doi and Edwa_rd@]. Here we assume that the stiff-
clude thatkl ~=10? and Eq.(2.18 should be well suited to "€SS of_the molecule is not too Iarg_e, so that the time scale
describe dyrriamic light scattering from actin solutions. How-Separation between solvent fluctuations and structural relax-

ever, some fluorescence microscopy stuffé suggest that ation still holds, i.e., the characteristic relaxation rate of a
' : ; 2\1/3;

the flexibility of actin could be strongly length scale depen-P€nding undulation of wavelengthy4 %) **is supposed to be

dent and that actin may be much more flexible on the charm“Ch smaller than the characteristic diffusion rate of solvent

acteristic length scales probed in light scattering experifluctuations of the same size. Then the hydrodynamically
ments. According to these results one would estimatdriven small fluctuations about the equilibrium conformation

kl,=10" and expecty(k,t) to cross over to Eq(2.16 as (\;vhe:e tr|1e plotentt_ial forfcets \{anl}sl;re ?uch faztelr tt.han thed
discussed after Eq2.18. structural relaxation of typical bending undulations an

For the genuinely semidilute case, whiej,=1 and ef- hence dominate the short time behavior of the dynamic struc-

fects from steric constraints are not negligible, we have tdure factor. What is special about the case of a semiflexible

consider the infrared cutofix,,>0 in Eq. (2.14. For polymer is again the rigid constraint imposed by the locally
v, =(ké )8/3 of the order of 1 the structure factor decays rod-like contour. If one would just follow the Doi-Edwards
ink t\L/vmo stepr)ns as we have mentioned after E214. We scheme naively, paying regard to the rodlike structure of the

; . . molecule only through the static structure factor, the Oseen
restrict the following analysis to the fast decay due to thetensor would render each contour element two times as mo-
single chain dynamicst{r,_=xp<1). Then it is useful to

bile along the contour as in the transverse directions, thus
split the integral in Eq(2.14 into two parts, one of which adding an artificial extra degree of freedom to the weakly
runs from zero to infinity and the other from zeroxg. A bending rod problem, which is moreover weighted twice. On
Taylor expansion of the integrand of the second integral renthe level of a mere counting of degrees of freedom, one can

dersk®Rg(t) to orderO(t?) in the simple form thus say that — compared to the mobility matrix E212) —
this amounts to overestimating the overall mobility of a con-
4 rdy [ e\ o e\ tour element by a factor of 2. If reversed, this argument tells
K2Rg (1) = —(yt)¥4 3 || ‘ol that one may follow the simple computional scheme of Ref.
. L L [9] if the result is divided by 2 in the end. This is indeed how

) _ we will proceed below. Of course, the procedure is not
This expression allows one to extract the entanglemendyictly rigorous: it does not pay regard to the local anisot-
length L,, (and thus the mesh siz&;,) from experimental o5y of the motion due to the rigid constraint. On the other
data and may eventually become useful in understanding theang, it takes the local reduction of the degrees of freedom
very interesting phenomeri&1] that occur when semiflex- properly into account. From our experience with the problem

ible polymer solutions are gradually cross-linked. The samey |ocal anisotropy in the preceding section we may expect
perturbation expansion has previously been claimed to aGhe result to be exact.

count for hydrodynamic screening effe¢@2]. We do not Using the screened Oseen tensor in Fourier space,

agree with this interpretation: Hydrodynamic screening re-

duces the hydrodynamic correlations. Nevertheless, the mo- 1 [k (K|

bility for the long modes certainly does not decrease to zero H(k)= KT E D) ( Y. ) (3.2
= h

but saturates at the finite valug 2, as we have shown ex-
plicitly by use of Eq.(2.5). See also the discussion after Eq. we arrive at the following integral for the initial decay rate:

(2.14.

(0 _KeT [¥2_dg g(q){(qz—k%2 q—k‘

= ——In
ll. INITIAL SLOPE Yk 27 (277)2g(k) 2qKé; 2 q+k
The results of the preceding section show that the struc- 24 5721224 45722 FK)24£-2
ture factorg(k,t) of a solution of semiflexible polymers de- (97 & )72 h n(q )2 5'12 — }
cays on a characteristic time scalg’ by a stretched expo- 4qkéy (a—k)"+ &,
nential law, Eq(2.18. However, this expression is not valid (3.3

in the limit t—0. The initial slope of the structure factor
does not become infinitely steep. Instead, as we explicitlyrhe static properties of the polymer enter the calculation
demonstrate in the Appendig(k,t—0) asymptotically ap- only via the static structure factgr(k) and through the fac-
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times the transversal radius of gyration of the actin filament.
Note that the resolution suggested by this comparison is far
beyond the scattering wavelength, which was about an order
of magnitude larger thaa in the cited light scattering ex-
periments. If the screening length has a finite value,(Ed)

and Eq.(3.5 have to be replaced by more complicated ex-
pressions, e.g.,

dilute

\ ——— semidilute

3
(0)__B _ —2¢-2
Yk W[ZS 30In(ka)+6k fh

2.6

00 Za’ 02 —6 k3¢, 2arctariké,) — 30k~ ¢, tarctarikéy,)

—3K2&IN(1+k 2£,%)—15In(1+k 2¢,?
FIG. 4. The effectivelwave-vector-dependentlynamic expo- &hin ) ) )]

nentz(k). The solid line is a plot of Eq(3.5) for the dilute case. (3.6
The dashed line is a representative curve for a semidilute solution
with screened hydrodynamic interactiorgs, € 200a). for k¢,>1, but the qualitative structure is preserved. The

main effect of screening is to flatten the increase/@f and
tor 1/2. This implies a certain universality of the initial decay z(k) in the long wavelength limitcf. Fig. 4. The above
rate even in the semiflexible case. However, it turns out to beesults for the dilute case can still be considered a reasonable
less universal than predicted by the Gaussian chain modeipproximation for semidilute solutions in a restricted range
The main contributions to the integral come from laggdt  of scattering wavelengths<é&,.
actually diverges at the upper limit as a consequence of the
short distance singularity of the Oseen tensor mentioned in
the Introduction. This justifies the weakly bending rod ap-
proximation and forx<l,, L we may replace the static Dynamic scattering experiments allow for an accurate
structure factor by its asymptotic forg(k) <k ~!. Again, we  measurement of model parameters, if the number of these
have introduced the lateral diametepof the molecule to cut parameters is small and, of course, if the model is adequate
off the ultraviolet divergence. After doing the integral and within the range of wavelength and frequency probed. Scat-
dropping all but the leading order termskia one obtains in  tering techniques are then sometimes more convenient than
the dilute limit (k&,— o) the strikingly simple result direct methods developed recently to investigate the dynam-
ics of individual polymers, such as flicker analyp&8] and
microrheology{39], which are still plagued by some techni-
cal complicationg40]. They allow one to probe in a quick
and reliable experiment the internal dynamics of single poly-
Working with the full (rather lengthy expression may be mers with the necessary statistical averaging inherently in-
necessary in some applications, but the conceptual and pragtuded. It was the purpose of our work to deriveithin the
tical significance of the result is best appreciated in the aboveommon experimental accurgagxact analytical expressions
limit. The deviation of Eq.(3.4 from the scaling law for the time decay of the dynamic structure factor for solu-
O ~k® for a Gaussian chain is weak, hence it is useful totions of semiflexible polymers. We succeeded in the case of
express Eq(3.4) as a quasiscaling law(?~k*¥ with a  Eq.(1.3), i.e., for scattering from the internal undulations of
wave-vector-dependent dynamical expong(k) given by genuinely semiflexible polymers in solution. This is a ge-
neric situation for neutron scattering from DNA or light scat-
6lnka—3 tering from actin solutions, just to mention two outstanding
~26Inka—5" (3.9 applications. Our analytical results for the initial decay rate
and the dynamic exponent for semiflexible polymers suggest
This result is depicted in Fig. 4 together with a representativeéhat deviations of the dynamic exponent fonore or lesy
curve for the more complicated semidilute case. It seems téiexible polymers from its classical value=3 are probably
account well for the deviations from the Gaussian chain predue to the local semiflexible structure of these molecules,
diction z=3 seen in several experiments with polystyreneand that the above analysis is therefore of some relevance
[35]. It is tempting to speculate that these are a signature ddlso to scattering from rather flexible polymers. Moreover,
hydrodynamically enhanced local semiflexibility. It would be these results lead to a convenient method to measure the
worth checking whether the initial decay of the structure fac-microscopic lateral diameter of a semiflexible polymer by
tor measured by neutron scattering from solutions of poly-use of the simple Eq(3.4). From a fit of the result for
styrene, DNA, or any other intrinsically semiflexible poly- g(k,t)/g(k,0),
mer may be fitted by Eq(3.4) with a reasonable value for

IV. CONCLUSIONS

keT (5
0 8 k3<——lnka. (3.4)

Yk _677277 6

a. Indeed, in the case of the biopolymer actin E84) al- ()3 T(}) i 1/4 1/t 5/4
ready passed this test with remarkable success: It fits excel- expy — K - —] +=|— ,
lently available light scattering data wita=5.4 nm [6], m 3 T 10\ o,

which compares very well to the value of 5:6.3 nm ob-
tained by much more elaborate methd®$,37 for two  valid for kl,>1 and intermediate times
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kly)~ 43y t<t<r s

( p) Yk ’TLm u(p,t)~(—)p/zsin( p,n_E)

to experimental data one finds with good accuracy the bend- .

ing modulusk (and the persistence length= «/kgT) of the ~ for p even. The transverse undulations and forces are ex-
molecules. Foké,,~1 the mesh siz&,, and the effective pressed as

hydrodynamic screening lengtf}, of the network can be

determined. In the case of chemical crosslinking one has to L -~ 1

be more careful since the development of microphases can rs(t)_zg re(Hu(p.s), fy _[% fou(p.s).

cause the mesh size to vary considerably throughout the

sample. For sufficiently largkL,, the terms containinng (We do not consider the zero mopl@he mode amplitudes
can be neglected and the dynamic structure factor obeys Edecay as

(2.18. Note that the hydrodynamic screening lengthis

closely related to the mesh siZg, because the surrounding (rp(t)rp(o)>T=(rS)Te*“Tp,

network disturbs the hydrodynamic autocorrelations of the

individual polymers over distances longer thgn. How-  Here Tpi= . 1p* and(rf,)T is determined by the equiparti-
ever, one should keep in mind that — due to our approxition theorem:

mate treatment of the hydrodynamic interaction in Sec. Il —

&y, in the effective friction coefficient used in Sec. || must be kgTL3

regarded as an effective parameter, which will in general <r§)T=—4.

differ from &, in its absolute value because it compensates w(mp)
for the deviation of the simple coefficient ER.2) from a
more accurate description as Eg.5). Finally we want to
mention a hidden ambiguity of the above results. According 12 Lo Lo

to Egs.(2.3), (2.4), and (2.12 a stiffening of the molecule Res (D=2(rs(0)r; (0) =15 (Org (0))r
(e.g., by a chemical manipulatipas well as an increase in HIri(0)=rL(0)]?)
concentration may cause a slowing down of the time decay s s m

of the structure factor. An apparent increase in concentratio
may easily be caused by all kinds of syneresis in the cours
of chemical cross-linking, although the overall concentration

remains constant. Therefore some caution is needed in the 82 [(FS>T—<rp(t)rp(0)>T]U(p,S)U(p,e)-
interpretation of experimental data. P

After splitting R; (t) into dynamic and static contributions

n . .
gsertlon of the normal modes renders the dynamic term as

For largep the parentheses are approximately equal for suc-

cessive terms in the sum and we can then replace the product
This work was supported by the Deutsche Forschungsgedf eigenfunctions by cdpm(s—s)/L]/2. Substituting the sum

meinschaft(DFG) under Contracts No. Fr. 850/2 and No. for t<r; by an integral we arrive at

SFB 266. We are grateful to R. @er, E. Sackmann, M.

Fuchs, and J. Wilhelm for helpful discussions.

ACKNOWLEDGMENTS

43 [ dp
APPENDIX X(l—e_t/TP).

The eigenfunctions of the linear bending equation for the _ _ _ _ . _
transverse undulations of a weakly bending rod with freentroducing the scaling variables as discussed in the main

ends ats= +L/2 are given by[13] text one now obtains Eq2.13.
Finally we derive the initial decay within this approach. In
cosv,s/L  coshy,siL the limit t—0, Rﬁm(t) becomeg sTaII. In this case we may
u(p,s)x expand Eq.(2.9) to first order inR;(t). Using Eq.(2.13

cow,/2 * coshy,/2
P P and Eq.(2.19 for largeké,, and neglecting the static contri-

. l . . . -
With v,~(2p-+1)m/2 for p>0 odd and by the analog ex- bution R;;,(0) in the weakly bending rod limit, we get

pression with cos and cosh replaced by sin and sinh, respeﬁ-(k t—0)
tively, for p even. Since we will only need the(p,s) for '
large p>1 ands<L (far from the ends we may drop the 1 1 xka(n—m)
hyperbolic terms, which are small of order exg=/2), and ) ﬂdxﬁa e
write
) (ykt)3/4J’°Odz zkan—m)
X|1—=(1—x%) o ? Cco W .

u(p,t)~(— )<p“>’2003< pwé)

After summation and neglecting kKLx/2 against
for p odd and z¢:=zkl2(t/ 7, ) ¥* we have
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1t 2 N 3/4 (0) k 3
9(kit=0)=g(k0) = 5 | dx(1=x*) (%) 7 ‘6_2_" In(&y/a).

»dz _ 4. Sin(ze)
<JoE e g

For short timest<, =7,-1 (see alsd33]) the z-integral A More accurate expression for the initial decay rate is com-
reduces tor/2¢ and for large scattering vectoki>1 the  Puted in Sec. lll. The deviation is due to the approximate

Static structure factw(k,o) approachea—/ka, hence treatment Of the hydl’odynamic intel’action in Sec. Il. By
comparison of the above result with E§.4) one can fix the
gk>L"1t—=0) 2kgT phenomenological parametey, for rather dilute systems
g(k,0) T 3w, K*t. (k&m>1), for which hydrodynamic screening is negligible.
Then ¢y, becomes roughly equal to the scattering wavelength
The initial decay is simple exponential in time with the ini- and no longer has the intuitive physical interpretation of a
tial slope screening length.
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